{"id":198375,"date":"2024-10-19T12:37:42","date_gmt":"2024-10-19T12:37:42","guid":{"rendered":"https:\/\/pdfstandards.shop\/product\/uncategorized\/aami-tir62354-2015\/"},"modified":"2024-10-25T05:10:47","modified_gmt":"2024-10-25T05:10:47","slug":"aami-tir62354-2015","status":"publish","type":"product","link":"https:\/\/pdfstandards.shop\/product\/publishers\/aami\/aami-tir62354-2015\/","title":{"rendered":"AAMI TIR62354 2015"},"content":{"rendered":"
This technical report applies to medical electrical equipment. The object of this technical report is to provide guidance on general testing procedures according to IEC 60601-1:1988 (including the collateral provisions of IEC 60601-1-1:2000) and IEC 60601-1:2005 and IEC 60601-1:2005 and IEC 60601-1:2005\/AMD1:2012.<\/p>\n
PDF Pages<\/th>\n | PDF Title<\/th>\n<\/tr>\n | ||||||
---|---|---|---|---|---|---|---|
1<\/td>\n | ANSI\/AAMI\/IEC TIR62354:2015, General testing procedures for medical electrical equipment <\/td>\n<\/tr>\n | ||||||
3<\/td>\n | Title page <\/td>\n<\/tr>\n | ||||||
4<\/td>\n | Copyright information <\/td>\n<\/tr>\n | ||||||
5<\/td>\n | AAMI Technical Information Report ANSI Technical Information Report <\/td>\n<\/tr>\n | ||||||
6<\/td>\n | Contents <\/td>\n<\/tr>\n | ||||||
7<\/td>\n | Glossary of equivalent standards <\/td>\n<\/tr>\n | ||||||
8<\/td>\n | Committee representation <\/td>\n<\/tr>\n | ||||||
9<\/td>\n | Background of ANSI\/AAMI adoption of IEC\/TR 62354:2014 <\/td>\n<\/tr>\n | ||||||
10<\/td>\n | Foreword <\/td>\n<\/tr>\n | ||||||
12<\/td>\n | Introduction <\/td>\n<\/tr>\n | ||||||
13<\/td>\n | 1 Scope and object 2 Normative references <\/td>\n<\/tr>\n | ||||||
14<\/td>\n | 3 Terms, definitions, abbreviations and acronyms 3.1 Terms and definitions 3.2 Abbreviations and acronyms 4 Types of tests 4.1 General <\/td>\n<\/tr>\n | ||||||
15<\/td>\n | 4.2 Visual inspection 5 State of the me equipment 6 Number of samples 7 Applicable test items to the clauses of IEC 60601-1 <\/td>\n<\/tr>\n | ||||||
16<\/td>\n | 8 Sequence of tests 9 General testing condition <\/td>\n<\/tr>\n | ||||||
17<\/td>\n | 10 Power sources for tests 10.1 General 10.2 Connection to a separate power source <\/td>\n<\/tr>\n | ||||||
18<\/td>\n | 10.3 Connection to an external d.c. power source 10.4 Source of power for me equipment 10.5 Supply mains for testing me equipment 11 Measurement and test equipment 11.1 General requirements <\/td>\n<\/tr>\n | ||||||
19<\/td>\n | 11.2 Accuracy <\/td>\n<\/tr>\n | ||||||
20<\/td>\n | 11.3 Safety criteria for selection 11.4 Calibration 12 Treatments of unit symbols and measured values <\/td>\n<\/tr>\n | ||||||
21<\/td>\n | Table 1 \u2013 Units outside the SI units system that may be used 13 Procedures for testing, including particular conditions 13.1 General 13.2 Tests to be performed by inspection <\/td>\n<\/tr>\n | ||||||
22<\/td>\n | Table 2 \u2013 Tests to be performed by inspection <\/td>\n<\/tr>\n | ||||||
23<\/td>\n | 13.2.1 RISK MANAGEMENT PROCESS <\/td>\n<\/tr>\n | ||||||
25<\/td>\n | 13.2.2 Ratings on critical components <\/td>\n<\/tr>\n | ||||||
26<\/td>\n | 13.2.3 Determination of APPLIED PARTS and ACCESSIBLE PARTS <\/td>\n<\/tr>\n | ||||||
28<\/td>\n | 13.2.4 Durability and legibility of marking <\/td>\n<\/tr>\n | ||||||
30<\/td>\n | 13.2.5 Battery markings <\/td>\n<\/tr>\n | ||||||
31<\/td>\n | 13.2.6 PATIENT leads or PATIENT cables <\/td>\n<\/tr>\n | ||||||
32<\/td>\n | 13.2.7 Plugs, sockets <\/td>\n<\/tr>\n | ||||||
33<\/td>\n | 13.2.8 POTENTIAL EQUALIZATION TERMINAL <\/td>\n<\/tr>\n | ||||||
34<\/td>\n | 13.2.9 MAINS TERMINAL DEVICE Table 3 \u2013 NOMINAL cross-sectional area of conductors of a POWER SUPPLY CORD <\/td>\n<\/tr>\n | ||||||
36<\/td>\n | 13.2.10 Sharp edges <\/td>\n<\/tr>\n | ||||||
37<\/td>\n | 13.2.11 HAZARDS associated with support systems <\/td>\n<\/tr>\n | ||||||
39<\/td>\n | 13.2.12 Construction requirements for fire ENCLOSURE of ME EQUIPMENT <\/td>\n<\/tr>\n | ||||||
41<\/td>\n | Figure 1 \u2013 Area of the bottom of an ENCLOSURE as specified in 11.3 b) 1) Figure 2 \u2013 Baffle <\/td>\n<\/tr>\n | ||||||
42<\/td>\n | Table 4 \u2013 Acceptable perforation of the bottom of an ENCLOSURE <\/td>\n<\/tr>\n | ||||||
43<\/td>\n | 13.2.13 Marking, conductor colors, indicator lights and controls and ACCOMPANYING DOCUMENTS <\/td>\n<\/tr>\n | ||||||
44<\/td>\n | 13.2.14 USABILITY of ME EQUIPMENT <\/td>\n<\/tr>\n | ||||||
45<\/td>\n | 13.3 Measurements and tests performed on non-energized equipment Table 5 \u2013 Measurements and tests performed on non-energized equipment <\/td>\n<\/tr>\n | ||||||
46<\/td>\n | 13.3.1 Humidity preconditioning <\/td>\n<\/tr>\n | ||||||
47<\/td>\n | 13.3.2 Impedance of PE connection <\/td>\n<\/tr>\n | ||||||
49<\/td>\n | 13.3.3 Dielectric strength <\/td>\n<\/tr>\n | ||||||
51<\/td>\n | 13.3.4 Ball pressure <\/td>\n<\/tr>\n | ||||||
52<\/td>\n | 13.3.5 Resistance to environmental stress <\/td>\n<\/tr>\n | ||||||
53<\/td>\n | 13.3.6 Thermal cycling <\/td>\n<\/tr>\n | ||||||
55<\/td>\n | 13.3.7 CREEPAGE DISTANCES and AIR CLEARANCES <\/td>\n<\/tr>\n | ||||||
56<\/td>\n | Figure 3 \u2013 CREEPAGE DISTANCE and AIR CLEARANCE \u2013 Example 1 Figure 4 \u2013 CREEPAGE DISTANCE and AIR CLEARANCE \u2013 Example 2 <\/td>\n<\/tr>\n | ||||||
57<\/td>\n | Figure 5 \u2013 CREEPAGE DISTANCE and AIR CLEARANCE \u2013 Example 3 Figure 6 \u2013 CREEPAGE DISTANCE and AIR CLEARANCE \u2013 Example 4 Figure 7 \u2013 CREEPAGE DISTANCE and AIR CLEARANCE \u2013 Example 5 Figure 8 \u2013 CREEPAGE DISTANCE and AIR CLEARANCE \u2013 Example 6 <\/td>\n<\/tr>\n | ||||||
58<\/td>\n | Figure 9 \u2013 CREEPAGE DISTANCE and AIR CLEARANCE \u2013 Example 7 Figure 10 \u2013 CREEPAGE DISTANCE and AIR CLEARANCE \u2013 Example 8 <\/td>\n<\/tr>\n | ||||||
59<\/td>\n | Figure 11 \u2013 CREEPAGE DISTANCE and AIR CLEARANCE \u2013 Example 9 Figure 12 \u2013 CREEPAGE DISTANCE and AIR CLEARANCE \u2013 Example 10 <\/td>\n<\/tr>\n | ||||||
61<\/td>\n | 13.3.8 Strain relief (cord anchorage) Table 6 \u2013 Testing of cord anchorages <\/td>\n<\/tr>\n | ||||||
63<\/td>\n | 13.3.9 Cord guard flexing (Cord bending) <\/td>\n<\/tr>\n | ||||||
64<\/td>\n | 13.3.10 Access to hazardous moving parts <\/td>\n<\/tr>\n | ||||||
66<\/td>\n | 13.3.11 Gaps <\/td>\n<\/tr>\n | ||||||
68<\/td>\n | Table 7 \u2013 Acceptable gaps a <\/td>\n<\/tr>\n | ||||||
69<\/td>\n | 13.3.12 Instability <\/td>\n<\/tr>\n | ||||||
73<\/td>\n | 13.3.13 Castors and wheels <\/td>\n<\/tr>\n | ||||||
75<\/td>\n | 13.3.14 Handle loading <\/td>\n<\/tr>\n | ||||||
77<\/td>\n | 13.3.15 Safety catch evaluation <\/td>\n<\/tr>\n | ||||||
78<\/td>\n | 13.3.16 Support loading <\/td>\n<\/tr>\n | ||||||
79<\/td>\n | Figure 13 \u2013 Human body test mass <\/td>\n<\/tr>\n | ||||||
81<\/td>\n | 13.3.17 Overflow <\/td>\n<\/tr>\n | ||||||
82<\/td>\n | 13.3.18 Spillage <\/td>\n<\/tr>\n | ||||||
83<\/td>\n | 13.3.19 Leakage <\/td>\n<\/tr>\n | ||||||
84<\/td>\n | 13.3.20 Ingress of water or particulate matter <\/td>\n<\/tr>\n | ||||||
89<\/td>\n | 13.3.21 Cleaning, sterilization and disinfection <\/td>\n<\/tr>\n | ||||||
90<\/td>\n | 13.3.22 Push (rigidity) <\/td>\n<\/tr>\n | ||||||
91<\/td>\n | 13.3.23 Impact <\/td>\n<\/tr>\n | ||||||
93<\/td>\n | 13.3.24 Drop impact Table 8 \u2013 Drop height <\/td>\n<\/tr>\n | ||||||
95<\/td>\n | 13.3.25 Rough handling <\/td>\n<\/tr>\n | ||||||
97<\/td>\n | 13.3.26 Mould stress relief <\/td>\n<\/tr>\n | ||||||
98<\/td>\n | 13.3.27 Actuating parts of controls (Knob pull and limitation of movement) <\/td>\n<\/tr>\n | ||||||
99<\/td>\n | Table 9 \u2013 Test torques for rotating controls <\/td>\n<\/tr>\n | ||||||
100<\/td>\n | 13.3.28 Construction of transformers <\/td>\n<\/tr>\n | ||||||
102<\/td>\n | 13.4 Measurements and tests for equipment that is operating Table 10 \u2013 Measurements and tests for equipment that is operating <\/td>\n<\/tr>\n | ||||||
103<\/td>\n | 13.4.1 ESSENTIAL PERFORMANCE \u2013 Functional <\/td>\n<\/tr>\n | ||||||
105<\/td>\n | 13.4.2 Power consumption (input) single phase and polyphase <\/td>\n<\/tr>\n | ||||||
106<\/td>\n | 13.4.3 Voltage mismatch <\/td>\n<\/tr>\n | ||||||
107<\/td>\n | 13.4.4 Limitation of voltage, current or energy <\/td>\n<\/tr>\n | ||||||
108<\/td>\n | 13.4.5 DEFIBRILLATION-PROOF APPLIED PART protection <\/td>\n<\/tr>\n | ||||||
109<\/td>\n | Figure 14 \u2013 Application of test voltage to bridged PATIENT CONNECTIONS (common mode) for DEFIBRILLATION-PROOF APPLIED PARTS <\/td>\n<\/tr>\n | ||||||
110<\/td>\n | Figure 15 \u2013 Application of test voltage to individual PATIENT CONNECTIONS (differential mode) for DEFIBRILLATION-PROOF APPLIED PARTS <\/td>\n<\/tr>\n | ||||||
114<\/td>\n | 13.4.6 Energy reduction Figure 16 \u2013 Application of test voltage to testthe delivered defibrillation energy (energy reduction test) <\/td>\n<\/tr>\n | ||||||
116<\/td>\n | 13.4.7 EARTH LEAKAGE CURRENT Figure 17 \u2013 Example of a measuring device and its frequency characteristics <\/td>\n<\/tr>\n | ||||||
118<\/td>\n | Figure 18 \u2013 Measuring circuit for the EARTH LEAKAGE CURRENTof CLASS I equipment, with or without APPLIED PARTS <\/td>\n<\/tr>\n | ||||||
120<\/td>\n | 13.4.8 TOUCH CURRENT <\/td>\n<\/tr>\n | ||||||
121<\/td>\n | Figure 19 \u2013 Measuring circuit for the TOUCH CURRENT <\/td>\n<\/tr>\n | ||||||
122<\/td>\n | 13.4.9 PATIENT LEAKAGE CURRENT <\/td>\n<\/tr>\n | ||||||
123<\/td>\n | Figure 20 \u2013 Measuring circuit for the PATIENT LEAKAGE CURRENTfrom the PATIENT CONNECTION to earth <\/td>\n<\/tr>\n | ||||||
124<\/td>\n | Figure 21 \u2013 Measuring circuit for the total PATIENT LEAKAGE CURRENT with all PATIENT CONNECTIONS of allAPPLIED PARTS of the same type (TYPE B APPLIED PARTS, TYPE BF APPLIED PARTS or TYPE CF APPLIED PARTS)connected together <\/td>\n<\/tr>\n | ||||||
125<\/td>\n | 13.4.10 PATIENT LEAKAGE CURRENT with mains on F-TYPE APPLIED PART <\/td>\n<\/tr>\n | ||||||
126<\/td>\n | Figure 22 \u2013 Measuring circuit for the PATIENT LEAKAGE CURRENT viathe PATIENT CONNECTION(S) of an F-TYPE APPLIED PART to earth causedby an external voltage on the PATIENT CONNECTION(S) <\/td>\n<\/tr>\n | ||||||
127<\/td>\n | Figure 23 \u2013 Measuring circuit for the PATIENT LEAKAGE CURRENTfrom PATIENT CONNECTION(S) to earth caused by an external voltageon a metal ACCESSIBLE PART that is not PROTECTIVELY EARTHED <\/td>\n<\/tr>\n | ||||||
128<\/td>\n | 13.4.11 PATIENT LEAKAGE CURRENT with mains on SIP\/SOP <\/td>\n<\/tr>\n | ||||||
129<\/td>\n | Figure 24 \u2013 Measuring circuit for the PATIENT LEAKAGE CURRENT from PATIENT CONNECTION(S) toearth caused by an external voltage on a SIGNAL INPUT\/OUTPUT PART <\/td>\n<\/tr>\n | ||||||
130<\/td>\n | 13.4.12 PATIENT AUXILIARY CURRENT <\/td>\n<\/tr>\n | ||||||
131<\/td>\n | Figure 25 \u2013 Measuring circuit for the PATIENT AUXILIARY CURRENT <\/td>\n<\/tr>\n | ||||||
132<\/td>\n | 13.4.13 WORKING VOLTAGE measurement <\/td>\n<\/tr>\n | ||||||
134<\/td>\n | 13.4.14 Sound pressure level measurements <\/td>\n<\/tr>\n | ||||||
135<\/td>\n | 13.4.15 Hydrostatic pressure Figure 26 \u2013 Ratio between hydraulic test pressureand maximum permissible working pressure <\/td>\n<\/tr>\n | ||||||
137<\/td>\n | 13.4.16 X-radiation (ionizing radiation) measurement <\/td>\n<\/tr>\n | ||||||
138<\/td>\n | 13.4.17 Normal heating <\/td>\n<\/tr>\n | ||||||
141<\/td>\n | 13.4.18 Operation to a specified temperature <\/td>\n<\/tr>\n | ||||||
142<\/td>\n | 13.4.19 Identification of source of ignition Figure 27 \u2013 Spark ignition test apparatus <\/td>\n<\/tr>\n | ||||||
144<\/td>\n | Figure 28 \u2013 Maximum allowable current I as a function of the maximum allowable voltage Umeasured in a purely resistive circuit in an OXYGEN RICH ENVIRONMENT Figure 29 \u2013 Maximum allowable voltage U as a function of the capacitance C measured in acapacitive circuit used in an OXYGEN RICH ENVIRONMENT <\/td>\n<\/tr>\n | ||||||
145<\/td>\n | Figure 30 \u2013 Maximum allowable current I as a function of the inductance L measured in aninductive circuit in an OXYGEN RICH ENVIRONMENT <\/td>\n<\/tr>\n | ||||||
146<\/td>\n | 13.4.20 Interruption of power supply <\/td>\n<\/tr>\n | ||||||
147<\/td>\n | 13.4.21 Limited power circuit <\/td>\n<\/tr>\n | ||||||
148<\/td>\n | 13.4.22 Failures of THERMOSTATS <\/td>\n<\/tr>\n | ||||||
149<\/td>\n | 13.4.23 Impairment of cooling <\/td>\n<\/tr>\n | ||||||
150<\/td>\n | 13.4.24 Locking of moving parts <\/td>\n<\/tr>\n | ||||||
152<\/td>\n | Table 11 \u2013 Allowable maximum temperatures for skin contactwith ME EQUIPMENT APPLIED PARTS Table 12 \u2013 Allowable maximum temperatures for ME EQUIPMENT partsthat are likely to be touched <\/td>\n<\/tr>\n | ||||||
153<\/td>\n | Table 13 \u2013 Allowable maximum temperatures of parts Table 14 \u2013 Temperature limits of motor windings <\/td>\n<\/tr>\n | ||||||
154<\/td>\n | Table 15 \u2013 Maximum motor winding steady-state temperature Table 16 \u2013 Maximum allowable temperatures of transformer windings under overload andshort-circuit conditions at 25 \u00b0C (\u00b1 5 \u00b0C) ambient temperature <\/td>\n<\/tr>\n | ||||||
155<\/td>\n | 13.4.25 Interruption or short circuit of motor capacitors <\/td>\n<\/tr>\n | ||||||
157<\/td>\n | 13.4.26 Motor running overload <\/td>\n<\/tr>\n | ||||||
159<\/td>\n | 13.4.27 Heating element overload <\/td>\n<\/tr>\n | ||||||
162<\/td>\n | 13.4.28 Rechargeable battery overcharge\/discharge <\/td>\n<\/tr>\n | ||||||
164<\/td>\n | 13.4.29 Mains transformers <\/td>\n<\/tr>\n | ||||||
166<\/td>\n | Table 17 \u2013 Test current for transformers <\/td>\n<\/tr>\n | ||||||
169<\/td>\n | Annex A: Sequence of testing A.1 Sequence of testing (IEC 60601-1:1988) <\/td>\n<\/tr>\n | ||||||
170<\/td>\n | A.2 Sequence of testing (IEC 60601-1:2005) <\/td>\n<\/tr>\n | ||||||
171<\/td>\n | Annex B: Information typically required for product safety testing (Guide) B.1 Purpose B.2 Description B.3 Intended use environment B.4 Construction B.5 List of safety-related components and relevant approvals B.6 Test system B.7 Power B.8 Grounding B.9 Modes of operation; configurations <\/td>\n<\/tr>\n | ||||||
172<\/td>\n | B.10 Failure modes B.11 Risk analysis according with ISO 14971 B.12 Software B.13 Auxiliary equipment B.14 Transformers and chokes <\/td>\n<\/tr>\n | ||||||
173<\/td>\n | Annex C: Testing and measuring equipment Table C.1 \u2013 IEC 60601-1:1988+AMD1:1991 and AMD2:1995 <\/td>\n<\/tr>\n | ||||||
175<\/td>\n | Annex D: Suitable measuring supply circuits Figure D.1 \u2013 Measuring supply circuit with one side of the SUPPLY MAINS at approximatelyearth potential Figure D.2 \u2013 Measuring supply circuit with SUPPLY MAINSapproximately symmetrical to earth potential <\/td>\n<\/tr>\n | ||||||
178<\/td>\n | Annex E: Preventive maintenance E.1 General E.2 Cleaning and disinfection E.3 Preventive maintenance checklist E.4 Operator checks <\/td>\n<\/tr>\n | ||||||
179<\/td>\n | Annex F: Test probes <\/td>\n<\/tr>\n | ||||||
180<\/td>\n | Figure F.1 \u2013 Standard test finger <\/td>\n<\/tr>\n | ||||||
181<\/td>\n | Figure F.2 \u2013 Test hook Figure F.3 \u2013 Test pin <\/td>\n<\/tr>\n | ||||||
182<\/td>\n | Figure F.4 \u2013 Ball-pressure test apparatus <\/td>\n<\/tr>\n | ||||||
183<\/td>\n | Annex G: Index of tests (IEC 60601-1:2005 clauses order) <\/td>\n<\/tr>\n | ||||||
186<\/td>\n | Annex H: Index of tests for an internally powered equipment \u2013 battery only \u2013 (IEC 60601-1:2005 clauses order) <\/td>\n<\/tr>\n | ||||||
188<\/td>\n | Annex I: Index of tests (IEC 60601-1:2005 alphabetic order) <\/td>\n<\/tr>\n | ||||||
191<\/td>\n | Annex J: Index of tests for an internally powered equipment \u2013 battery only \u2013 (IEC 60601-1:2005 alphabetic order) <\/td>\n<\/tr>\n | ||||||
193<\/td>\n | Annex K: Production line tests K.1 Production-line dielectric voltage-withstand test <\/td>\n<\/tr>\n | ||||||
194<\/td>\n | K.2 Production-line grounding-continuity test K.3 Production-line earth leakage current test K.4 Recommended features for specific test equipment K.4.1 Hipot test equipment <\/td>\n<\/tr>\n | ||||||
195<\/td>\n | K.4.2 120 k\u03a9 leakage impedance K.4.3 Leakage current test equipment <\/td>\n<\/tr>\n | ||||||
196<\/td>\n | Annex L: Evaluation of the laboratory power source characteristics L.1 Purpose L.2 Application L.3 Definitions L.3.1 Definitions unique to this annex <\/td>\n<\/tr>\n | ||||||
197<\/td>\n | L.3.2 Acronyms unique to this annex L.3.3 Equations unique to this annex <\/td>\n<\/tr>\n | ||||||
198<\/td>\n | L.4 Testing Table L.1 \u2013 Method for testing a single phase laboratory power source <\/td>\n<\/tr>\n | ||||||
200<\/td>\n | Form 1 <\/td>\n<\/tr>\n | ||||||
201<\/td>\n | Annex M: Traceability of calibrations and calibration intervals M.1 Purpose M.2 Traceability of calibrations M.3 Calibration intervals for test equipment requiring calibration <\/td>\n<\/tr>\n | ||||||
203<\/td>\n | Annex N: Guidance for preparation, attachment, extension, use of thermocouples and acceptance of thermocouple wire N.1 General N.2 Preparation Figure N.1 \u2013 Thermocouple preparation N.3 Placement <\/td>\n<\/tr>\n | ||||||
204<\/td>\n | N.4 Attachment Figure N.2 \u2013 Securing of thermocouples <\/td>\n<\/tr>\n | ||||||
205<\/td>\n | Figure N.3 \u2013 Example of confinement of a thermocouple <\/td>\n<\/tr>\n | ||||||
206<\/td>\n | N.5 Extension Figure N.4 \u2013 Example where thermocouple connectors need not be used N.6 Use N.7 Acceptance of thermocouples wire <\/td>\n<\/tr>\n | ||||||
207<\/td>\n | Annex O: Guideline for safe laboratory work O.1 basic safety guidelines for working with test instruments <\/td>\n<\/tr>\n | ||||||
209<\/td>\n | O.2 Basic guidelines for performing safety tests <\/td>\n<\/tr>\n | ||||||
210<\/td>\n | O.3 Basic guidelines regarding test personnel and test areas <\/td>\n<\/tr>\n | ||||||
212<\/td>\n | O.4 Contents of a documented safe environment for working in a testing laboratory <\/td>\n<\/tr>\n | ||||||
213<\/td>\n | Bibliography <\/td>\n<\/tr>\n | ||||||
214<\/td>\n | Index of defined terms <\/td>\n<\/tr>\n<\/table>\n","protected":false},"excerpt":{"rendered":" AAMI\/IEC TIR62354:2015 – General testing procedures for medical electrical equipment<\/b><\/p>\n |