{"id":194740,"date":"2024-10-19T12:21:25","date_gmt":"2024-10-19T12:21:25","guid":{"rendered":"https:\/\/pdfstandards.shop\/product\/uncategorized\/ieee-iec-60076-57-129-2017\/"},"modified":"2024-10-25T04:52:29","modified_gmt":"2024-10-25T04:52:29","slug":"ieee-iec-60076-57-129-2017","status":"publish","type":"product","link":"https:\/\/pdfstandards.shop\/product\/publishers\/ieee\/ieee-iec-60076-57-129-2017\/","title":{"rendered":"IEEE IEC 60076 57 129 2017"},"content":{"rendered":"
Revision Standard – Active.<\/p>\n
PDF Pages<\/th>\n | PDF Title<\/th>\n<\/tr>\n | ||||||
---|---|---|---|---|---|---|---|
1<\/td>\n | IEC\/IEEE 60076-57-129-2017 Front Cover <\/td>\n<\/tr>\n | ||||||
4<\/td>\n | CONTENTS <\/td>\n<\/tr>\n | ||||||
8<\/td>\n | FOREWORD <\/td>\n<\/tr>\n | ||||||
10<\/td>\n | 1 Scope 2 Normative references 2.1 IEC references <\/td>\n<\/tr>\n | ||||||
11<\/td>\n | 2.2 IEEE references 3 Terms, definitions and symbols 3.1 Terms and definitions <\/td>\n<\/tr>\n | ||||||
12<\/td>\n | 3.2 Symbols <\/td>\n<\/tr>\n | ||||||
13<\/td>\n | 4 Use of normative references 5 General requirements 5.1 General 5.2 Service conditions 5.2.1 General 5.2.2 Temperature 5.2.3 Load current 5.2.4 AC voltage 5.2.5 Direction of power flow <\/td>\n<\/tr>\n | ||||||
14<\/td>\n | 5.3 Unusual service conditions 5.4 Loading of transformer above rating 6 Rating data 6.1 General 6.2 Rated voltage 6.3 Rated current 6.4 Rated frequency 6.5 Rated power <\/td>\n<\/tr>\n | ||||||
15<\/td>\n | 7 Losses 7.1 General 7.2 No-load loss 7.3 Load loss under rated frequency conditions 7.4 Load loss under service conditions <\/td>\n<\/tr>\n | ||||||
16<\/td>\n | 7.5 Determination of hot-spot temperature <\/td>\n<\/tr>\n | ||||||
17<\/td>\n | 8 Test requirements 8.1 General 8.1.1 Routine tests 8.1.2 Type tests 8.1.3 Special tests 8.1.4 Commissioning tests Tables Table 1 \u2013 Routine, type and special tests <\/td>\n<\/tr>\n | ||||||
18<\/td>\n | 8.2 Test applicability 8.2.1 General 8.2.2 DC withstand voltage test 8.2.3 Polarity reversal test 8.2.4 AC applied withstand test for valve side winding(s) <\/td>\n<\/tr>\n | ||||||
19<\/td>\n | 8.3 Dielectric test voltage levels 8.3.1 Line windings 8.3.2 Valve windings <\/td>\n<\/tr>\n | ||||||
20<\/td>\n | 8.4 Induced voltage level with partial discharge measurement 9 Tests 9.1 General 9.1.1 Applicable tests 9.1.2 Test sequence 9.1.3 Ambient temperature 9.1.4 Assembly <\/td>\n<\/tr>\n | ||||||
21<\/td>\n | 9.1.5 Converter transformers for connection to gas-insulated equipment 9.2 Load loss and impedance measurements 9.2.1 General 9.2.2 Calculation procedure <\/td>\n<\/tr>\n | ||||||
22<\/td>\n | 9.3 Switching impulse test 9.4 Applied switching impulse test on the valve side winding 9.5 Lightning impulse tests 9.6 DC withstand voltage test 9.6.1 Applicability 9.6.2 Transformer test temperature 9.6.3 Polarity <\/td>\n<\/tr>\n | ||||||
23<\/td>\n | 9.6.4 Test procedure 9.6.5 Acceptance criteria 9.7 Polarity reversal test 9.7.1 Applicability 9.7.2 Transformer test temperature 9.7.3 Test procedure <\/td>\n<\/tr>\n | ||||||
24<\/td>\n | 9.7.4 Acceptance criteria Figures Figure 1 \u2013 Double reversal test voltage profile <\/td>\n<\/tr>\n | ||||||
25<\/td>\n | 9.8 Extended polarity-reversal test 9.8.1 Applicability 9.8.2 Transformer test temperature 9.8.3 Test procedure <\/td>\n<\/tr>\n | ||||||
26<\/td>\n | Figure 2 \u2013 Extended polarity reversal test alternative 1 Figure 3 \u2013 Extended polarity reversal test alternative 2 <\/td>\n<\/tr>\n | ||||||
27<\/td>\n | 9.8.4 Acceptance criteria 9.9 AC applied voltage test for valve side winding(s) 9.9.1 Test procedure 9.9.2 Acceptance criteria 9.10 AC applied voltage test on line side winding(s) <\/td>\n<\/tr>\n | ||||||
28<\/td>\n | 9.11 AC induced voltage test with partial discharge measurement 9.11.1 General 9.11.2 Acceptance criteria 9.12 Induced voltage test including running of oil pumps 9.13 Temperature-rise test 9.13.1 General <\/td>\n<\/tr>\n | ||||||
29<\/td>\n | 9.13.2 Test procedure <\/td>\n<\/tr>\n | ||||||
30<\/td>\n | 9.13.3 Tank surface temperature rise measurement 9.14 Load current test 9.15 Sound level measurement <\/td>\n<\/tr>\n | ||||||
31<\/td>\n | 9.16 Insulation power-factor test 9.17 Winding insulation resistance test 9.18 Core insulation resistance test 9.19 Short-circuit test 9.20 Frequency Response Analysis (FRA) measurements 9.21 Over-excitation test 10 Dielectric tests on transformers that have been in service <\/td>\n<\/tr>\n | ||||||
32<\/td>\n | 11 Sound levels 11.1 General 11.2 Determination of service sound levels 11.3 Guaranteed sound levels 12 Bushings 12.1 General <\/td>\n<\/tr>\n | ||||||
33<\/td>\n | 12.2 Line side winding bushings 12.3 Valve side winding bushings 13 Tap-changer 13.1 General 13.2 Current wave shape 13.3 Consecutive operation of tap-changers 14 High-frequency modelling <\/td>\n<\/tr>\n | ||||||
34<\/td>\n | 15 Tolerances 15.1 General 15.2 Short-circuit impedance tolerances 16 Rating plate <\/td>\n<\/tr>\n | ||||||
36<\/td>\n | Annex\u00a0A (informative)In service overloading of HVDC converter transformers used with current commutated valves (either mercury arc valves or thyristors) A.1 General A.2 Overloading in service <\/td>\n<\/tr>\n | ||||||
37<\/td>\n | Table A.1 \u2013 Example of an overload table <\/td>\n<\/tr>\n | ||||||
38<\/td>\n | A.3 Temperature rise test for demonstrating normal loading condition A.4 Temperature rise test for demonstrating planned overload conditions Figure A.1 \u2013 Example of an overload diagram <\/td>\n<\/tr>\n | ||||||
40<\/td>\n | Annex\u00a0B (informative)HVDC converter transformers for use with voltage source converters B.1 General B.2 Converter transformer stressed with only fundamental voltage and current <\/td>\n<\/tr>\n | ||||||
41<\/td>\n | B.3 Converter transformers stressed with direct voltage, fundamental voltage and fundamental current Figure B.1 \u2013 Configuration with no additional stresses on the converter transformer <\/td>\n<\/tr>\n | ||||||
42<\/td>\n | B.4 Converter transformer stressed with the valves connected directly to the converter transformer Figure B.2 \u2013 Configuration with multi-level VSC HVDC converter station appliedin a monopolar scheme with DC overhead line transmission <\/td>\n<\/tr>\n | ||||||
43<\/td>\n | B.5 Summary of stresses Figure B.3 \u2013 Configuration with VSC valves connected directlyto the converter transformer <\/td>\n<\/tr>\n | ||||||
44<\/td>\n | Annex\u00a0C (informative)Design review C.1 General C.2 Topics <\/td>\n<\/tr>\n | ||||||
46<\/td>\n | Annex\u00a0D (informative)Transformer specification content D.1 General D.2 Data to be provided by the purchaser <\/td>\n<\/tr>\n | ||||||
47<\/td>\n | D.3 Data to be provided by the manufacturer <\/td>\n<\/tr>\n | ||||||
49<\/td>\n | Annex\u00a0E (informative)Audible sound of converter transformers E.1 General E.2 Technical reference E.3 Current harmonics E.4 Voltage harmonics <\/td>\n<\/tr>\n | ||||||
50<\/td>\n | E.5 DC bias current E.6 Derivation of service sound power levels E.7 Sound level guarantee <\/td>\n<\/tr>\n | ||||||
51<\/td>\n | Annex\u00a0F (informative)Determination of transformer service load loss atrated non-sinusoidal converter current from measurementswith rated transformer current of fundamental frequency F.1 General <\/td>\n<\/tr>\n | ||||||
52<\/td>\n | F.2 Alternative method for calculation of the winding eddy loss enhancement factor <\/td>\n<\/tr>\n | ||||||
53<\/td>\n | Figure F.1 \u2013 Cross-section of a winding strand <\/td>\n<\/tr>\n | ||||||
54<\/td>\n | Bibliography <\/td>\n<\/tr>\n<\/table>\n","protected":false},"excerpt":{"rendered":" IEC\/IEEE International Standard – Power transformers–Part 57-129: Transformers for HVDC applications<\/b><\/p>\n |