{"id":160639,"date":"2024-10-19T09:39:00","date_gmt":"2024-10-19T09:39:00","guid":{"rendered":"https:\/\/pdfstandards.shop\/product\/uncategorized\/aci-228-1r-03\/"},"modified":"2024-10-25T01:57:39","modified_gmt":"2024-10-25T01:57:39","slug":"aci-228-1r-03","status":"publish","type":"product","link":"https:\/\/pdfstandards.shop\/product\/publishers\/aci\/aci-228-1r-03\/","title":{"rendered":"ACI 228.1R 03"},"content":{"rendered":"
Guidance is provided on the use of methods to estimate the in-place strength of concrete in new and existing construction. The methods include: rebound number, penetration resistance, pullout, break-off, ultrasonic pulse velocity, maturity, and cast-in-place cylinders. The principle, inherent limi\u00adtations, and repeatability of each method are reviewed. Procedures are presented for developing the relationship needed to estimate compressive strength from in-place results. Factors to consider in planning in-place tests are discussed, and statistical techniques to interpret test results are presented. The use of in-place tests for acceptance of concrete is intro\u00adduced. The appendix provides information on the number of strength levels that should be used to develop the strength relationship and explains a regression analysis procedure that accounts for error in both dependent and independent variables. Keywords: coefficient of variation; compressive strength; construction; in-place tests; nondestructive tests; safety; sampling; statistical analysis.<\/p>\n
PDF Pages<\/th>\n | PDF Title<\/th>\n<\/tr>\n | ||||||
---|---|---|---|---|---|---|---|
1<\/td>\n | CONTENTS <\/td>\n<\/tr>\n | ||||||
2<\/td>\n | CHAPTER 1\u2014 INTRODUCTION 1.1\u2014 Scope 1.2\u2014Need for in-place tests during construction <\/td>\n<\/tr>\n | ||||||
3<\/td>\n | 1.3\u2014Influence of ACI 318 1.4\u2014Recommendations in other ACI documents 1.5\u2014Existing construction <\/td>\n<\/tr>\n | ||||||
4<\/td>\n | 1.6\u2014Objective of report CHAPTER 2\u2014 REVIEW OF METHODS 2.1\u2014 Introduction 2.2\u2014Rebound number (ASTM C 805) <\/td>\n<\/tr>\n | ||||||
5<\/td>\n | 2.3\u2014Penetration resistance (ASTM C 803\/C 803M) <\/td>\n<\/tr>\n | ||||||
6<\/td>\n | 2.4\u2014Pullout test (ASTM C 900) <\/td>\n<\/tr>\n | ||||||
9<\/td>\n | 2.5\u2014Break-off number (ASTM C 1150) <\/td>\n<\/tr>\n | ||||||
10<\/td>\n | 2.6\u2014Ultrasonic pulse velocity (ASTM C 597) <\/td>\n<\/tr>\n | ||||||
11<\/td>\n | 2.7\u2014Maturity method (ASTM C 1074) <\/td>\n<\/tr>\n | ||||||
13<\/td>\n | 2.8\u2014Cast-in-place cylinders (ASTM C 873 2.9\u2014Strength limitations 2.10\u2014Combined methods <\/td>\n<\/tr>\n | ||||||
14<\/td>\n | 2.11\u2014Summary CHAPTER 3\u2014 STATISTICAL CHARACTERISTICS OF TEST RESULTS 3.1\u2014Need for statistical analysis <\/td>\n<\/tr>\n | ||||||
15<\/td>\n | 3.2\u2014Repeatability of test results 3.2.1 Rebound number <\/td>\n<\/tr>\n | ||||||
16<\/td>\n | 3.2.2 Penetration resistance <\/td>\n<\/tr>\n | ||||||
17<\/td>\n | 3.2.3 Pullout test <\/td>\n<\/tr>\n | ||||||
19<\/td>\n | 3.2.4 Break-off test <\/td>\n<\/tr>\n | ||||||
20<\/td>\n | 3.2.5 Pulse velocity 3.2.6 Maturity method <\/td>\n<\/tr>\n | ||||||
21<\/td>\n | 3.2.7 Cast-in-place cylinder CHAPTER 4\u2014 DEVELOPMENT OF STRENGTH RELATIONSHIP 4.1\u2014General 4.2\u2014New construction 4.2.1 General 4.2.2 Number of strength levels 4.2.3 Number of replications <\/td>\n<\/tr>\n | ||||||
22<\/td>\n | 4.2.4 Regression analysis <\/td>\n<\/tr>\n | ||||||
23<\/td>\n | 4.2.5 Procedures for correlation testing 4.2.5.1 Rebound number <\/td>\n<\/tr>\n | ||||||
24<\/td>\n | 4.2.5.2 Penetration resistance 4.2.5.3 Pullout test 4.2.5.4 Break-off test 4.2.5.5 Ultrasonic pulse velocity <\/td>\n<\/tr>\n | ||||||
25<\/td>\n | 4.2.5.6 Maturity method 4.2.5.7 Cast-in-place cylinder 4.3\u2014Existing construction 4.3.1 General 4.3.2 Developing strength relationship <\/td>\n<\/tr>\n | ||||||
26<\/td>\n | CHAPTER 5\u2014 IMPLEMENTATION OF IN- PLACE TESTING 5.1\u2014 New construction 5.1.1 Preconstruction consensus 5.1.2 Number of test locations 5.1.3 Number of tests per location 5.1.4 Providing access to test locations <\/td>\n<\/tr>\n | ||||||
28<\/td>\n | 5.1.5 Distribution of tests <\/td>\n<\/tr>\n | ||||||
29<\/td>\n | 5.1.6 Critical dimensions 5.2\u2014Existing construction 5.2.1 Pretesting meeting 5.2.2 Sampling plan 5.2.3 Number of tests <\/td>\n<\/tr>\n | ||||||
30<\/td>\n | CHAPTER 6\u2014 INTERPRETATION AND REPORTING OF RESULTS 6.1\u2014General 6.2\u2014Statistical methods 6.2.1 Danish method (Bickley 1982b) 6.2.2 General tolerance factor method (Hindo andBergstrom 1985) <\/td>\n<\/tr>\n | ||||||
32<\/td>\n | 6.2.3 Rigorous method (Stone and Reeve 1986) 6.2.4 Alternative method (Carino 1993) <\/td>\n<\/tr>\n | ||||||
34<\/td>\n | 6.2.5 Summary 6.3\u2014Reporting results <\/td>\n<\/tr>\n | ||||||
35<\/td>\n | CHAPTER 7\u2014 IN-PLACE TESTS FOR ACCEPTANCE OF CONCRETE 7.1\u2014 General 7.2\u2014Acceptance criteria 7.2.1 Molded cylinders 7.2.2 Cores 7.2.3 In-place tests <\/td>\n<\/tr>\n | ||||||
36<\/td>\n | 7.3\u2014Early-age testing CHAPTER 8\u2014 REFERENCES 8.1\u2014 Referenced standards and reports <\/td>\n<\/tr>\n | ||||||
37<\/td>\n | 8.2\u2014Cited references <\/td>\n<\/tr>\n | ||||||
40<\/td>\n | APPENDIX A.1\u2014 Minimum number of strength levels <\/td>\n<\/tr>\n | ||||||
41<\/td>\n | A.2\u2014Regression analysis with X-error \n(Mandel 1984) <\/td>\n<\/tr>\n | ||||||
42<\/td>\n | A.3\u2014Standard deviation of estimated Y-value \n(Stone and Reeve 1986) <\/td>\n<\/tr>\n | ||||||
43<\/td>\n | A.4\u2014Example <\/td>\n<\/tr>\n<\/table>\n","protected":false},"excerpt":{"rendered":" 228.1R-03: In-Place Methods to Estimate Concrete Strength<\/b><\/p>\n |