BS ISO 16336:2014
$215.11
Applications of statistical and related methods to new technology and product development process. Robust parameter design (RPD)
Published By | Publication Date | Number of Pages |
BSI | 2014 | 84 |
This International Standard gives guidelines for applying the optimization method of robust parameter design, also called as parameter design, an effective methodology for optimization based on Taguchi Methods, to achieve robust products.
This International Standard prescribes signal-to-noise ratio (hereafter SN ratio) as a measure of robustness, and the procedures of parameter design to design robust products utilizing this measure. The word “robust” in this International Standard means minimized variability of product’s function under various noise conditions, that is, insensitivity of the product’s function to the changes in the levels of noises. For robust products, their responses are sensitive to signal and insensitive to noises.
The approach of this International Standard can be applied to any products that are designed and manufactured, including machines, chemical products, electronics, foods, consumer goods, software, new materials, and services. Manufacturing technologies are also regarded as products that are used by manufacturing processes.
PDF Catalog
PDF Pages | PDF Title |
---|---|
6 | Foreword |
7 | Introduction |
9 | Section sec_1 Section sec_2 Section sec_3 Section sec_3.1 Section sec_3.1.1 Section sec_3.1.2 1 Scope 2 Normative references 3 Terms and definitions and symbols 3.1 Term and definitions |
10 | Section sec_3.1.3 Section sec_3.1.4 Section sec_3.1.5 Section sec_3.1.6 Section sec_3.1.7 |
11 | Section sec_3.1.8 Section sec_3.1.9 Section sec_3.1.10 Section sec_3.2 3.2 Symbols |
12 | Section sec_4 Section sec_4.1 Section sec_4.2 4 Robust parameter design — Overview 4.1 Requirements 4.2 Assessing the robustness of a system |
14 | Figure fig_1 Figure fig_2 Section sec_4.3 4.3 Robustness assessment through SN ratio |
15 | Section sec_4.4 4.4 An efficient method for assessing technical ideas — Parameter design |
16 | Section sec_4.5 Figure fig_3 4.5 Two-step optimization (Strategy of parameter design) |
17 | Figure fig_4 Figure fig_5 |
18 | Section sec_4.6 Section sec_5 Section sec_5.1 4.6 Determination of the optimum design 5 Assessment of robustness by SN ratio 5.1 Concepts of SN ratio |
19 | Section sec_5.2 Section sec_5.3 5.2 Types of SN ratio 5.3 Procedure of the quantification of robustness |
21 | Section sec_5.4 Section sec_5.4.1 Table tab_1 5.4 Formulation of SN ratio: Calculation using decomposition of total sum of squares |
22 | Section sec_5.4.2 |
23 | Table tab_2 |
24 | Section sec_5.4.3 Section sec_5.4.4 |
25 | Table tab_3 Section sec_5.4.5 |
26 | Section sec_5.4.6 Section sec_5.4.7 |
27 | Table tab_4 Section sec_5.5 Section sec_5.5.1 5.5 Some topics of SN ratio |
28 | Section sec_5.5.2 Section sec_5.5.3 Section sec_6 Section sec_6.1 Section sec_6.2 6 Procedure of a parameter design experiment 6.1 General 6.2 (Step 1) Clarify the system’s ideal function |
29 | Section sec_6.3 Section sec_6.4 Section sec_6.5 6.3 (Step 2) Select a signal factor and its range 6.4 (Step 3) Select measurement method of output response 6.5 (Step 4) Develop noise strategy and select noise factors and their levels |
30 | Section sec_6.6 Section sec_6.7 Table tab_5 6.6 (Step 5) Select control factors and their levels from design parameters 6.7 (Step 6) Assign experimental factors to inner or outer array |
31 | Section sec_6.8 Table tab_6 Section sec_6.9 6.8 (Step 7) Conduct experiment and collect data 6.9 (Step 8) Calculate SN ratio, η, and sensitivity, S |
33 | Table tab_7 |
34 | Table tab_8 Section sec_6.10 6.10 (Step 9) Generate factorial effect diagrams on SN ratio and sensitivity |
35 | Figure fig_6 |
36 | Section sec_6.11 Section sec_6.12 6.11 (Step 10) Select the optimum condition 6.12 (Step 11) Estimate the improvement in robustness by the gain |
37 | Section sec_6.13 Table tab_9 6.13 (Step 12) Conduct a confirmation experiment and check the gain and “reproducibility” |
38 | Section sec_7 Figure fig_7 7 Case study — Parameter design of a lamp cooling system |
39 | Table tab_10 Table tab_11 Table tab_12 |
40 | Table tab_13 |
41 | Table tab_14 |
43 | Table tab_15 |
44 | Table tab_16 Figure fig_8 |
46 | Table tab_17 Figure fig_9 |
47 | Figure fig_10 |
48 | Annex sec_A Annex sec_A.1 Annex sec_A.1.1 Annex sec_A.1.2 Annex A (informative) Comparison of a system’s robustness using SN ratio |
49 | Table tab_A.1 Figure fig_A.1 |
51 | Table tab_A.2 Annex sec_A.1.3 |
52 | Table tab_A.3 |
53 | Table tab_A.4 |
54 | Annex sec_A.2 |
55 | Annex sec_B Annex sec_B.1 Annex sec_B.1.1 Annex B (informative) Case studies and SN ratio in various technical fields |
56 | Figure fig_B.1 Table tab_B.1 |
57 | Figure fig_B.2 Table tab_B.2 |
58 | Table tab_B.3 Table tab_B.4 |
59 | Table tab_B.5 |
60 | Table tab_B.6 Table tab_B.7 |
61 | Figure fig_B.3 |
62 | Table tab_B.8 |
63 | Figure fig_B.4 Annex sec_B.1.2 |
64 | Figure fig_B.5 |
65 | Table tab_B.9 Table tab_B.10 |
66 | Table tab_B.11 Table tab_B.12 |
67 | Table tab_B.13 |
68 | Table tab_B.14 |
69 | Table tab_B.15 |
70 | Figure fig_B.6 |
71 | Table tab_B.16 |
72 | Annex sec_B.2 Annex sec_B.2.1 Table tab_B.17 Table tab_B.18 |
73 | Annex sec_B.2.2 |
74 | Table tab_B.19 Annex sec_B.2.3 Table tab_B.20 |
75 | Annex sec_B.3 Table tab_B.21 |
76 | Table tab_B.22 Annex sec_B.4 Table tab_B.23 |
78 | Table tab_B.24 |
80 | Reference ref_1 Reference ref_2 Reference ref_3 Reference ref_4 Reference ref_5 Reference ref_6 Reference ref_7 Reference ref_8 Reference ref_9 Reference ref_10 Reference ref_11 Reference ref_12 Reference ref_13 Reference ref_14 Reference ref_15 Reference ref_16 Reference ref_17 Reference ref_18 Reference ref_19 Reference ref_20 Bibliography |
81 | Reference ref_21 Reference ref_22 Reference ref_23 Reference ref_24 Reference ref_25 |