{"id":78909,"date":"2024-10-17T18:27:01","date_gmt":"2024-10-17T18:27:01","guid":{"rendered":"https:\/\/pdfstandards.shop\/product\/uncategorized\/asce-9780784401705-1996\/"},"modified":"2024-10-24T19:38:31","modified_gmt":"2024-10-24T19:38:31","slug":"asce-9780784401705-1996","status":"publish","type":"product","link":"https:\/\/pdfstandards.shop\/product\/publishers\/asce\/asce-9780784401705-1996\/","title":{"rendered":"ASCE 9780784401705 1996"},"content":{"rendered":"
N\/A<\/p>\n
PDF Pages<\/th>\n | PDF Title<\/th>\n<\/tr>\n | ||||||
---|---|---|---|---|---|---|---|
8<\/td>\n | Contents <\/td>\n<\/tr>\n | ||||||
14<\/td>\n | I <\/td>\n<\/tr>\n | ||||||
16<\/td>\n | 1 Basic Notions, Equations and Principles 1.1 Basic equations of elasticity <\/td>\n<\/tr>\n | ||||||
17<\/td>\n | 1.2 Linear elastic materials <\/td>\n<\/tr>\n | ||||||
23<\/td>\n | 1.3 Elastoplastic materials <\/td>\n<\/tr>\n | ||||||
30<\/td>\n | 1.4 Damage theory <\/td>\n<\/tr>\n | ||||||
45<\/td>\n | 1.5 Viscoplastic materials <\/td>\n<\/tr>\n | ||||||
50<\/td>\n | 1.6 Principle of virtual work and variational principles <\/td>\n<\/tr>\n | ||||||
61<\/td>\n | 1.7 Convergence criteria <\/td>\n<\/tr>\n | ||||||
62<\/td>\n | 1.8 Variational principles in anisotropic and nonhomogeneous elasticity <\/td>\n<\/tr>\n | ||||||
66<\/td>\n | 1.9 Variational formulation of rate boundary value problem including softening <\/td>\n<\/tr>\n | ||||||
67<\/td>\n | 1.10 Nonlinear systems and stability criteria <\/td>\n<\/tr>\n | ||||||
71<\/td>\n | 2 Skeletal Structures 2.1 Basic relations for beams <\/td>\n<\/tr>\n | ||||||
80<\/td>\n | 2.2 Truss and beam elements <\/td>\n<\/tr>\n | ||||||
90<\/td>\n | 2.3 Curved beam element <\/td>\n<\/tr>\n | ||||||
92<\/td>\n | 2.4 Grillage element <\/td>\n<\/tr>\n | ||||||
95<\/td>\n | 2.5 Static condensation <\/td>\n<\/tr>\n | ||||||
101<\/td>\n | 2.6 Coordinate transformation <\/td>\n<\/tr>\n | ||||||
107<\/td>\n | 3 Plates and Shells 3.1 Basic relations for isoparametric elements <\/td>\n<\/tr>\n | ||||||
111<\/td>\n | 3.2 Basic relations for triangular elements <\/td>\n<\/tr>\n | ||||||
113<\/td>\n | 3.3 Tension-compression bar <\/td>\n<\/tr>\n | ||||||
114<\/td>\n | 3.4 Thin-walled elements <\/td>\n<\/tr>\n | ||||||
116<\/td>\n | 3.5 Elements for plane problems <\/td>\n<\/tr>\n | ||||||
135<\/td>\n | 3.6 Plate elements <\/td>\n<\/tr>\n | ||||||
154<\/td>\n | 3.7 Shell elements <\/td>\n<\/tr>\n | ||||||
158<\/td>\n | 3.8 Interaction between structure and foundation <\/td>\n<\/tr>\n | ||||||
164<\/td>\n | 3.9 Patch test <\/td>\n<\/tr>\n | ||||||
167<\/td>\n | 4 Solids 4.1 Tetrahedra <\/td>\n<\/tr>\n | ||||||
169<\/td>\n | 4.2 Bricks <\/td>\n<\/tr>\n | ||||||
170<\/td>\n | 4.3 Brick with rotational degrees of freedom <\/td>\n<\/tr>\n | ||||||
173<\/td>\n | 4.4 Axisymmetric continuum <\/td>\n<\/tr>\n | ||||||
175<\/td>\n | 5 Linear Dynamics and Stability 5.1 Basic notions and relations <\/td>\n<\/tr>\n | ||||||
181<\/td>\n | 5.2 Methods of eigenvibration analysis <\/td>\n<\/tr>\n | ||||||
201<\/td>\n | 5.3 Forced vibration of linear systems <\/td>\n<\/tr>\n | ||||||
214<\/td>\n | 5.4 Response to harmonic excitation <\/td>\n<\/tr>\n | ||||||
220<\/td>\n | II <\/td>\n<\/tr>\n | ||||||
222<\/td>\n | 6 Semianalytical Methods 6.1 Energy-based beam analysis by Fourier series <\/td>\n<\/tr>\n | ||||||
225<\/td>\n | 6.2 Finite strip method <\/td>\n<\/tr>\n | ||||||
229<\/td>\n | 6.3 Curved box girders <\/td>\n<\/tr>\n | ||||||
234<\/td>\n | 6.4 Plane strip with rotational degrees of freedom <\/td>\n<\/tr>\n | ||||||
237<\/td>\n | 7 FE Solution of Special Problems <\/td>\n<\/tr>\n | ||||||
239<\/td>\n | 7.1 Torsion of bars <\/td>\n<\/tr>\n | ||||||
245<\/td>\n | 7.2 FE solution of diffusion equation <\/td>\n<\/tr>\n | ||||||
247<\/td>\n | 7.3 Deformation of soils and other porous materials <\/td>\n<\/tr>\n | ||||||
253<\/td>\n | 7.4 FEM in fracture mechanics <\/td>\n<\/tr>\n | ||||||
265<\/td>\n | 8 Boundary Element Method <\/td>\n<\/tr>\n | ||||||
266<\/td>\n | 8.1 Somigliana’s formulae <\/td>\n<\/tr>\n | ||||||
272<\/td>\n | 8.2 Direct version of BEM <\/td>\n<\/tr>\n | ||||||
279<\/td>\n | 8.3 Symmetric version of BEM <\/td>\n<\/tr>\n | ||||||
284<\/td>\n | 8.4 Transformation field analysis using BEM <\/td>\n<\/tr>\n | ||||||
290<\/td>\n | 8.5 Solution of dynamic problems by BEM <\/td>\n<\/tr>\n | ||||||
295<\/td>\n | 8.6 Plate analysis by BEM <\/td>\n<\/tr>\n | ||||||
305<\/td>\n | 9 Problems of Nonlinear Mechanics <\/td>\n<\/tr>\n | ||||||
307<\/td>\n | 9.1 Notation and basic expressions for nonlinear beams <\/td>\n<\/tr>\n | ||||||
313<\/td>\n | 9.2 Fundamentals of geometrically nonlinear continuum theory <\/td>\n<\/tr>\n | ||||||
326<\/td>\n | 9.3 FEM discretization of geometrically nonlinear structures <\/td>\n<\/tr>\n | ||||||
342<\/td>\n | 9.4 Methods for systems of nonlinear equations <\/td>\n<\/tr>\n | ||||||
353<\/td>\n | 9.5 Critical (instability) point on the loading path <\/td>\n<\/tr>\n | ||||||
362<\/td>\n | 9.6 FEM approach problems including softening and localization <\/td>\n<\/tr>\n | ||||||
365<\/td>\n | 9.7 Physically nonlinear and time-dependent BEM <\/td>\n<\/tr>\n | ||||||
372<\/td>\n | 10 Adaptive FE Techniques 10.1 p\u2014version of the FEM <\/td>\n<\/tr>\n | ||||||
376<\/td>\n | 10.2 Adaptive technique of Zienkiewicz and Zhu <\/td>\n<\/tr>\n | ||||||
380<\/td>\n | 10.3 Artificial intelligence methods in an hp-version of the FEM <\/td>\n<\/tr>\n | ||||||
385<\/td>\n | 10.4 Multi-grid methods for the solution of systems of linear equations <\/td>\n<\/tr>\n | ||||||
387<\/td>\n | 11 Systems with Random Fields <\/td>\n<\/tr>\n | ||||||
388<\/td>\n | 11.1 Random properties of a structure <\/td>\n<\/tr>\n | ||||||
391<\/td>\n | 11.2 Basic statistical methods <\/td>\n<\/tr>\n | ||||||
394<\/td>\n | 11.3 Probabilistic finite element method (PFEM) <\/td>\n<\/tr>\n | ||||||
404<\/td>\n | Bibliography <\/td>\n<\/tr>\n | ||||||
415<\/td>\n | A: Matrix Formulation of Gauss Elimination <\/td>\n<\/tr>\n | ||||||
417<\/td>\n | B: Numerical Integration <\/td>\n<\/tr>\n | ||||||
424<\/td>\n | Index A B C <\/td>\n<\/tr>\n | ||||||
425<\/td>\n | D E F G <\/td>\n<\/tr>\n | ||||||
426<\/td>\n | H I J K L <\/td>\n<\/tr>\n | ||||||
427<\/td>\n | M N O P Q R S <\/td>\n<\/tr>\n | ||||||
428<\/td>\n | T U V <\/td>\n<\/tr>\n | ||||||
429<\/td>\n | W Y Z <\/td>\n<\/tr>\n<\/table>\n","protected":false},"excerpt":{"rendered":" Numerical Methods in Structural Mechanics<\/b><\/p>\n |